
Solving Cross-browser
Responsive Challenges

In this inal chapter, we will learn:

•	 The fundamental difference between progressive enhancement and
graceful degradation

•	 How to make older versions of Internet Explorer responsive

•	 How to use Modernizr to conditionally load CSS iles
•	 How to use Modernizr to conditionally load JavaScript polyills
•	 How to change long lists of navigation to select menus on small viewports

•	 How to provide images for high resolution (retina) displays

Before we get to the meat of this inal chapter, let's recap where we are and what
we know.

Mobile usage is exploding. Consequently users view websites with a variety of
viewports (different sizes and orientations) and with varying bandwidths. For
the foreseeable future, we need to design and build our websites starting with
the essential content and layering on features and enhancements progressively.
Furthermore, due to the bandwidth considerations, the code base should be as
lean and lexible as possible.

Design-wise, we've embraced all three legs of the Ethan Marcotte responsive design
methodology. CSS3's media queries (covered in Chapter 2, Media Queries: Supporting
Differing Viewports) are used to create design breakpoints where the layout can adapt
dramatically to the viewport. Then lexible images and media alongside a luid grid
(covered in Chapter 3, Embracing Fluid Layouts) to provide a smooth lex between
these media query breakpoints. The result is a design that not only works for today's
popular viewports but for the future's too.

Solving Cross-browser Responsive Challenges

[270]

To keep our code base lean, in Chapter 4, HTML5 for Responsive Designs, we
switched our markup to HTML5. It provides economies, more semantic code, and
makes features such as ofline viewing possible. Going further, we added some
WAI-ARIA accessibility to our code, providing additional aids for screen readers
and assistive technologies.

In Chapter 5, CSS3: Selectors, Typography, and Color Modes and Chapter 6, Stunning
Aesthetics with CSS3, we looked at the incredible power and lexibility of CSS3,
learning about new RGBA and HSLA color modes and how common design
lourishes such as box-shadows, text-shadows, background gradients, and so on can
be achieved without images, using CSS3 alone. In addition, the powerful selectors of
CSS3 have allowed us to select anything we need from the DOM, a level of selection
power that previously required JavaScript. Yet CSS3 hasn't just given us the ability
to adapt the design and drastically lower the amount of bandwidth required to
view our site. It has also added functionality we could never enjoy before without
employing Flash of JavaScript: custom typography (Chapter 5, CSS3: Selectors,
Typography, and Color Modes) and beautiful smooth transitions (Chapter 7, CSS3
Transitions, Transformations, and Animations) between different visual states.
Keeping one eye on the future, we also glimpsed at sophisticated features
such as CSS3 3D transformations.

Finally, in the last chapter, we tackled the humdrum task of form building, relishing
the opportunity to handle the heavy work of form validation and form UI element
creation using HTML5 markup. Importantly, we also added a JavaScript fall back to
conditionally enhance the experience for older browsers such as Internet Explorer
versions 6, 7, and 8.

Throughout this book we've built up a fairly simple responsive website in HTML
and CSS3 called And The Winner Isn't…. You can visit this site in your browser at
http://www.andthewinnerisnt.com.

http://www.andthewinnerisnt.com
http://www.andthewinnerisnt.com

Chapter 9

[271]

The following screenshot shows how the front page currently looks on an iPhone:

Solving Cross-browser Responsive Challenges

[272]

The following screenshot shows how the front page looks on an iPad:

The following screenshot shows how it looks in the Android browser (emulator):

Chapter 9

[273]

The following screenshot shows how it looks in a modern desktop browser (Google
Chrome v16):

Finally, the following screenshot shows how it looks presently in Internet Explorer 8:

Oh Momma! Pass the service revolver…

Solving Cross-browser Responsive Challenges

[274]

Looking at the site in Internet Explorer 8, which doesn't understand HTML5
elements, such as <aside>, <header>, <nav>, and <footer>, by default brings
us to the thrust of this chapter—solving cross-browser responsive challenges.

Progressive enhancement versus
graceful degradation
You're probably aware of the phrases "progressive enhancement" and "graceful
degradation". These two concepts are methodologies for dealing with wide and
varied browser support and spark ierce debate within the web community. Whilst
initially they may seem inter-changeable terms, they are actually fundamentally
opposed. Here's my take…

Graceful degradation means creating a site for modern browsers and then ensuring
that certain older browsers are afforded a usable experience. Features degrade in
older browsers and there is usually a cut-off point in which the oldest browsers
aren't supported. There are also occasions where users are merely warned that there
is a problem with their browser and workarounds are suggested (for example, "your
browser is a joke—get a new one!")

Progressive enhancement is the reversal of graceful degradation. Progressive
enhancement begins with markup that adheres to web standards, meaning it will be
usable by all browsers (irrespective of technologies such as JavaScript and even CSS).
The experience is then progressively enhanced for more capable browsers through
CSS styling and eventually JavaScript (if required).

There are hundreds of articles discussing the merits and failures of each approach.
For starters, I'd take a look at this piece on the Opera developer's site: http://dev.
opera.com/articles/view/graceful-degradation-progressive-enhancement/
and this excellent piece by Aaron Gustafson: http://www.alistapart.com/
articles/understandingprogressiveenhancement.

Reality
Currently, progressive enhancement is largely considered to be the best practice way
of developing a website. However, the cold hard truth is that whilst I fundamentally
favor and build sites using the progressive enhancement methodology, there are
plenty of instances where I am arguably doing things in a graceful degradation
manner. How so?

http://dev.opera.com/articles/view/graceful-degradation-progressive-enhancement/
http://dev.opera.com/articles/view/graceful-degradation-progressive-enhancement/

Chapter 9

[275]

The www.andthewinnerisnt.com site we have just built up uses HTML5 as its
code base. Older browsers such as Internet Explorer versions 6, 7, and 8 (from this
point on, also referred to as "old IE") were built and released before HTML5 (which
you'll remember isn't a ratiied standard despite its growing ubiquity) and so don't
understand what <aside>, <section>, and <footer> elements are for. So, from a
purist sense it could be argued I shouldn't be using HTML5 elements. By adding a
piece of JavaScript to ix this basic functionality problem—is this really progressive
enhancement?

Despite this, unless there is a compelling reason not to, I always opt to use HTML5
over HTML 4.01. The reality is that for the work I do on a week-in week-out basis,
HTML5 offers more beneits than shortcomings. So, if using HTML5 (and I certainly
recommend you do), give all devices the best shot at handling it natively by coding
standards compliant HTML code (use the HTML5 validator at http://validator.
nu/ or at http://validator.w3.org/ to eliminate any errors).

Regardless, there will inevitably be a point in which you choose (or are forced) to
make some portion of the enhanced functionality afforded by modern browsers,
possible in ailing versions of Internet Explorer. Maybe you want border-radius to
work in old IE, for example. However, before you go there, I'm going to bend your
ear just a little more…

Should you ix old versions of Internet
Explorer?
At this point I'd like to re-iterate an earlier point: it's almost certainly possible
to polyill the majority of HTML5 and CSS3 features for older browsers but the
resulting user experience will be heavily laden with JavaScript and potentially less
usable than it would be without the polyills. Needless to say, it's important to
consider the performance implications of such a choice. Just because you can, doesn't
mean you should!

Furthermore, even without polyills (which we shall look at shortly), in my
experience, adding, testing, and coniguring IE speciic CSS code to make IE6 and IE7
(and to a lesser extent IE8 and IE9) render pages so they look as similar as possible
to a modern standards compliant browser takes at least as much time as visually
enhancing a site for modern browsers—just far less enjoyable! Is that how you or
your client want to spend the allocated development time?

Solving Cross-browser Responsive Challenges

[276]

Statistics (again)
Let's revisit some of the ground we covered in Chapter 1, Getting Started with HTML5,
CSS3, and Responsive Web Design. Whilst conceding that statistics are always open
to interpretation, we noted that from July 2010 to July 2011 global mobile browser
usage (as measured by Global Stats at http://gs.statcounter.com) had risen
(from 2.86 percent to 7.02 percent) whilst usage of Internet Explorer 7 had dropped
(to 5.45 percent). For the last month of 2011, the stats are even more revealing:
Internet Explorer 7 was just 4 percent with Internet Explorer 6 enjoying just 1.78
percent. Mobile browser usage meanwhile had increased to 8.04 percent.

An even more interesting fact is that for December 2011, a single modern browser,
Google's Chrome (I'm including both, versions 15 and 16), accounted for 25.7 percent
of global browser usage; almost the same amount accounted for by versions 6,7, and
8 of Internet Explorer (27.9 percent). Once you then factor the numbers for other
modern browsers such as Safari (4.3 percent, excluding the iOS version) and all
versions of Firefox (21.01 percent), and then the relevant mobile browsers, it's
not dificult to appreciate that developing and enhancing the user experience for
modern browsers, rather than patching up the holes in old ones makes more sense.
At least to me!

The bottom line: usage of ailing versions of Internet Explorer (6, 7, and 8) is
diminishing whilst usage of modern browsers (both desktop and mobile) is
increasing.

Personal choice
Currently, my personal stance for new website builds is that I ensure tight visuals
in the current version of Internet Explorer (v9 at the time of writing) and the nearest
prior version (for example, IE8). Tweaking layout and style issues in older versions is
then negotiable due to the additional time needed.

That doesn't mean I simply disregard any fundamental usability problems with
versions such as IE7, I merely limit development time to ensure that basic layout and
functionality works, and disregard minor alignment issues and visual enhancements
that aren't supported within the browser such as background gradients, rounded
corners, box-shadows, and so on. These things don't affect usability; for the most part
they are merely progressive enhancements that I wouldn't expect (and nor should
anyone else!) to see on aging browsers.

Chapter 9

[277]

Testing sites across multiple browsers

Typically, standards compliant browsers, such as Chrome, Safari, and
Firefox, render HTML5 and CSS3 based web pages pretty similarly. At
present, the majority of smart phones (those based on Android and iOS),
like their desktop Safari and Chrome counterparts, use WebKit as their
base and also render pages as you would expect. However, the different
versions of Internet Explorer are entirely different and there'll no doubt
come a point where you'll need to check your design there too (unless it's
your default browser in which case you have my sympathy). I usually

use IE Tester (http://www.my-debugbar.com/wiki/IETester/
HomePage)—a free utility to run multiple versions of Internet Explorer
on a single machine. However, there are plenty of alternatives and this
feature on Smashing Magazine gives a good overview of some common
choices:

http://www.smashingmagazine.com/2011/08/07/a-dozen-
cross-browser-testing-tools/

To illustrate this approach, after looking at http://www.andthewinnerisnt.
com in IE8, it's obvious we've got some fundamental work to do, merely making
it functional. We're going to use a great JavaScript tool called Modernizr and a
polyill to patch things up for old IE. I'm not sure that IE deserves it after all the pain
it causes but that's just the kind of guy I am. However, before we get to that, let's
understand Modernizr a little more.

Modernizr—the frontend developer's
Swiss army knife
The web community's ability to igure out the many and varied issues of cross
browser compatibility and create solutions for mere mortals like myself never ceases
to amaze and delight me. Modernizr was mentioned briely in Chapter 4, HTML5 for
Responsive Designs and again in the last chapter. To reiterate, Modernizr is an open
source JavaScript library that feature tests a browser's capabilities. Fauk Ateş wrote
the irst version, and the project now also includes Alex Sexton and the incredibly
talented Paul Irish as the lead developer. It's a tool of choice for a few companies you
may have heard of—Twitter, Microsoft, and Google. I mention this not merely to
blow smoke up the Modernizr team (although they certainly deserve it) but more to
illustrate that this isn't merely today's great piece of JavaScript. Put bluntly, it's a tool
that is worth understanding.

http://www.my-debugbar.com/wiki/IETester/HomePage
http://www.my-debugbar.com/wiki/IETester/HomePage
http://www.andthewinnerisnt.com

Solving Cross-browser Responsive Challenges

[278]

So what does it actually do? How does it enable us to both polyill older browsers
and progressively enhance the user experience for newer ones and how do we make
it do what we need? Read on grasshopper...

In terms of actions, Modernizr does little, by default, other than add Remy Sharp's
HTML5 shim (when selected) to enable structural HTML5 elements such as <aside>
and <section> in non-HTML5 capable browsers such as IE 8 and lower versions.
What it does is "feature test" the browser. Consequently, it knows whether said
browser supports various features of HTML5 and CSS3. This then provides the
means to take a different action depending upon that information. The rest is for us
to implement. So, let's add Moderniz to our pages and make a start.

First, download Modernizr (http://www.modernizr.com).

Which version of Modernizr—development or production?

If you're interested in how it works, grab the development version of
Modernizr as each option/test is documented. However, using the
production option allows you to select only the tests that are relevant
to the site or web application you are building, keeping the ile nice
and lean.

http://www.modernizr.com

Chapter 9

[279]

Now, save the ile to a suitable location (as before I've used a js folder in the root).
And then call the ile in <head> of your page:

<head>

<meta charset=utf-8>

<meta name="viewport" content="width=device-width,initial-
scale=1.0,maximum-scale=1" />

<title>And the winner isn't…</title>

<link href="css/main.css" rel="stylesheet" />

<script src="js/modernizr.js"></script>

</head>

With Modernizr added, when viewing the source code of a page in Firebug or
similar, it shows a variety of different classes added to the HTML tag. Here's an
example from Firefox v9.01:

<html class=" js flexbox geolocation postmessage indexeddb history
websockets rgba hsla multiplebgs backgroundsize borderimage
borderradius boxshadow textshadow opacity cssanimations csscolumns
cssgradients no-cssreflections csstransforms no-csstransforms3d
csstransitions fontface generatedcontent video audio localstorage
sessionstorage applicationcache" lang="en">

This is great. It tells us, on a browser-by-browser basis, what features it has tested
and which features the browser does or doesn't support (where there is no support
for a feature, it preixes the feature with no-). This lets us do two major things—ix
styling issues on a feature-by-feature basis in our CSS iles and also conditionally
load additional CSS or JS iles only when needed.

Fix styling issues with Modernizr
Our responsive And the winner isn't… site is presenting the perfect opportunity to ix
a problem with Modernizr. Whilst the Quiz page (http://www.andthewinnerisnt.
com/3Dquiz.html) works ine in browsers (such as Safari and Chrome) that support
3D transforms it's just a simple hover effect in browsers that don't. Currently,
regardless of whether a browser can render the 3D transforms or not, we have a note
telling people: This page relies on 3D transforms. If the posters don't lip on hover,
try viewing in Safari or Chrome.

But thanks to Modernizr's additional classes, we now have a means of only showing
a relevant note if their browser doesn't have the 3D transform feature.

.note {

 display: none;

http://www.andthewinnerisnt.com/3Dquiz.html
http://apple.com/safari
http://google.com/chrome
http://google.com/chrome

Solving Cross-browser Responsive Challenges

[280]

}

.no-csstransforms3d .note {

 display: block;

}

Breaking that down, irst we set the CSS to not show the note by default:

.note {

 display: none;

}

This means browsers that have the CSS 3D Transform feature (Google Chrome 16 for
example) won't see the note (see the following screenshot):

Then the second rule uses the additional class added by Modernizr to show the note
for browsers that don't have the 3D transforms feature:

.no-csstransforms3d .note {

 display: block;

}

Chapter 9

[281]

The following screenshot shows the same page in Firefox 9:

Modernizr allows us to stop thinking in terms of browsers and think in terms
of features.

Solving Cross-browser Responsive Challenges

[282]

Modernizr adds HTML5 element support for
old IE
As I've chosen a custom production version of Modernizr, that includes the HTML5
shim, refreshing the page in Internet Explorer 8 reveals a web page (as shown in the
following screenshot) that looks a whole lot better than it did before:

I didn't need to do anything more. Because Modernizr has enabled HTML5
structural elements in old IE many standard CSS styles are now understood
and the page renders as it should.

For my money, that is perfectly usable. If you hadn't seen the same site in a modern
browser you wouldn't necessarily know anything was different. However, due to
IE8's lack of support for CSS3, we know there are some obvious visual shortcomings
compared to a modern browser; there are no alternate colors in the navigation
links (if needed we could easily ix this by adding an extra class to odd navigation
links), no rounded corners on the button, no text or box shadows and perhaps
more importantly, although our luid grid lexes, a lack of CSS3 support means no
media query support. No media queries—no signiicant layout changes at differing
viewports in Internet Explorer 6, 7, or 8.

Chapter 9

[283]

Although I don't consider this layout "broken" in any way, a tool such as Modernizr
does give us the capability to add features that polyill older browsers as we see
it. To illustrate, let's add media query min/max-width support so that our design
responds to different viewports in Internet Explorer 6, 7, and 8.

Add min/max media query capability for
Internet Explorer 6, 7, and 8
The polyill that I generally use to add media query support to older versions of
Internet Explorer only adds support for min/max-width media queries. There are
more substantial media query polyills that add a greater range of media query
support but for a responsive design, Respond.js by Scott Jehl is simple to use, fast,
and has always served me well.

Respond.js (https://github.com/scottjehl/Respond) can actually be used
without Modernizr—just add it to the page in question, and as the author Scott Jehl
himself says, "Crack open Internet Explorer and pump ists in delight".

So, before we integrate Respond.js with Modernizer, let's do just that. Drop Respond.
js straight into our page (just add it after the Modernizr ile we already added) and
check it does what we want for IE. To do this, download the ile, save it in a suitable
location, and link to it in the <head> section:

<head>

<meta charset=utf-8>

<meta name="viewport" content="width=device-width,initial-
scale=1.0,maximum-scale=1" />

<title>And the winner isn't…</title>

<link href="css/main.css" rel="stylesheet" />

<script src="js/modernizr.js"></script>

<script src="js/respond.min.js"></script>

</head>

https://github.com/scottjehl/Respond
https://github.com/scottjehl/Respond

Solving Cross-browser Responsive Challenges

[284]

Now, once we load the page in Internet Explorer 8 and resize the browser window,
we get our responsive design back (see the following screenshot):

Great, we've added a polyill that sorts out min- and max-width media queries in
Internet Explorer but here's the rub: this thing is now being loaded for every browser
that loads the page—whether they need it or not. One solution would be to stick the
script link in an IE conditional comment like the following:

<!--[if lte IE 8]>

 <script src="js/respond.min.js"/></script>

<![endif]-->

I'm sure you've come across conditional comments before. They are a simple way
of loading CSS or JS iles (or even content) that only the relevant version of Internet
Explorer will use. All other browsers will see the code as a comment and ignore it.

In this example, our conditional comment says, "If you are less than or equal to (the
lte part) Internet Explorer 8, (the IE 8 part) do this".

Chapter 9

[285]

All about conditional comments

Conditional comments are falling out of favor compared with feature
detection but if you'd like to know more, read all about them at the
following URL:

http://msdn.microsoft.com/en-us/library/
ms537512%28v=vs.85%29.aspx

That will work ine. But do we really want to litter our markup with IE speciic
conditional comments? And what about polyills for other browsers? This is where
Modernizr steps up to the plate.

Conditional loading with Modernizr
A big pull of Modernizr when trying to keep websites and web applications as lean
as possible is that it can load resources (both CSS and JS iles) conditionally. So,
rather than use a "scatter gun" approach and laden our pages with every polyill a
user might need (regardless of whether they actually need them or not), we only load
the polyills a user actually needs. This keeps our pages and load times as lean as they
can be for each and every user.

So with Modernizr already added to the head of our pages, let's use it to
conditionally load our Respond.js polyill only if the browser in question doesn't
natively understand CSS3 media queries (for example IE versions 6, 7, and 8).

Modernizr includes a JavaScript micro-library called YepNope.js (http://
yepnopejs.com/). It uses a simple format:

Modernizr.load({

 test: Modernizr.mq('only all'),

 nope: 'js/respond.min.js'

});

First up is the call to the resource loading part of Modernizr:

Modernizr.load({

Within this is the test itself and a number of possible actions based on the result of
that test. In this example, we have asked if the browser understands a media query:

 test: Modernizr.mq('only all'),

If not, the resource should load our respond.min.js ile:

 nope: 'js/respond.min.js'

http://yepnopejs.com/

Solving Cross-browser Responsive Challenges

[286]

Here only all is the equivalent of "do you understand media queries?" Old IE will
always fail the test, resulting in nope and therefore load the relevant resource. This
enables respond.min.js to only be loaded when needed.

We could also opt to load additional iles at the same time:

Modernizr.load({
 test: Modernizr.mq('only all'),
 nope: ['js/respond.min.js', 'css/extra.css']
});

This example uses an array to add the respond.min.js ile and a CSS ile called
extra.css. You may opt to load CSS this way to maintain separate styles that are
only needed in the presence or absence of certain features. It's worth remembering
that it's also possible to load different resources based on different outcomes:

Modernizr.load({
 test: Modernizr.mq('only all'),
 yep: 'js/pass.js',
 nope: 'js/respond.min.js'['fail-polyfill.js', 'fail.css'],
 both: 'js/for-all.js'
});

Here, we load one ile if the browser passes, another two (in the array) if it fails and a
inal ile if it passes or fails.

The conditional loading code tests can be written in another separate JavaScript ile.
In this instance, I have called mine the conditional.js ile and saved it in the js
folder, alongside modernizr.js and respond.min.js. So, the <head> section now
looks as follows:

<head>
<meta charset=utf-8>
<meta name="viewport" content="width=device-width,initial-
scale=1.0,maximum-scale=1" />
<title>And the winner isn't…</title>
<link href="css/main.css" rel="stylesheet" />
<script src="js/modernizr.js"></script>
<script src="js/conditional.js"></script>

</head>

Note that I've removed respond.min.js from the head as it's now loaded in
conditionally as and when needed.

More documentation on how to conditionally load resources with
Modernizr can be found at http://www.modernizr.com/
docs/#load

Chapter 9

[287]

Get your polyills here
Remember, there's a great repository (pun intended) of useful polyills at
the following Github location:

https://github.com/Modernizr/Modernizr/wiki/HTML5-
Cross-browser-Polyfills

Changing navigation links to a drop

menu (conditionally)
A common issue with responsive designs is that if you have lots of navigation
links on a page they can take up a sizeable portion of your screen real estate in
smaller viewports.

For example, with only six page links, this is how any page currently loads for the
And the winner isn't… website on a smaller viewport:

Solving Cross-browser Responsive Challenges

[288]

I'd like to swap those links out for a drop menu but only if a browser is below a
certain viewport width. Now, you can roll your own piece of JavaScript to convert
the menu items to a drop menu. The venerable Chris Coyier has documented how
this can be achieved (http://css-tricks.com/convert-menu-to-dropdown/).
Alternatively, there are a few pre-written scripts that do this for you. For brevity and
ease, I have opted to use one such script. The following screenshot shows what the
drop menu does to our navigation links on smaller viewports:

http://css-tricks.com/convert-menu-to-dropdown/
http://css-tricks.com/convert-menu-to-dropdown/

Chapter 9

[289]

Clicking on the Select a page button brings up the navigation, as shown in the
following screenshot:

Solving Cross-browser Responsive Challenges

[290]

A perfect poster child for progressive enhancement—it isn't essential functionality
but it gets more content "above the fold" for users with smaller viewports. So, let's
get on and implement it. First off, download the Responsive Menu script (https://
github.com/mattkersley/Responsive-Menu). As before, save the relevant ile
(jquery.mobilemenu.js) to the js folder. There is just one thing we need to do
irst in the markup, and that's give our navigation links in each page an id:

<nav role="navigation">
 <ul id="mainNav">

 Why?
 Offline
 Redemption
 Videos/clips
 Quotes
 Quiz

</nav>

We could live without doing this but jQuery selectors work much faster with a
speciic id to latch onto.

Now, in the conditional.js ile, we'll add the following code:

Modernizr.load([
 {
 test: Modernizr.mq('only all'),
 nope: 'js/respond.min.js'
 },
 {
 // load the menu convertor if max-width is 600px;
 test: Modernizr.mq('only screen and (max-width: 600px)'),
 yep : ['js/jquery-1.7.1.js', 'js/jquery.mobilemenu.js'],
 complete : function () {
 // Run this after everything in this group has downloaded
 // and executed, as well everything in all previous groups
 $(document).ready(function(){

 $('#mainNav').mobileMenu({
 switchWidth: 600, //width (in px to
switch at)
 topOptionText: 'Select a page', //first option text
 indentString: ' ' //string for indenting
nested items
 });
 });

 }
 }
]);

https://github.com/mattkersley/Responsive-Menu

Chapter 9

[291]

After the prior conditional load that adds Respond.js for old IE, we've added
another test:

test: Modernizr.mq('only screen and (max-width: 600px)'),

The previous test asks, does this viewport understand media queries and if it does, is
the maximum width of the viewport 600px? If it does...

 yep : ['js/jquery-1.7.1.js', 'js/jquery.mobilemenu.js'],

The previous line loads both the jQuery library and the Responsive Menu ile:

complete : function () {

…more code…

The complete section effectively says, once any iles are downloaded and executed,
run the following:

$(document).ready(function(){

 $('#mainNav').mobileMenu({

 switchWidth: 600, //width (in px to
switch at)

 topOptionText: 'Select a page', //first option text

 indentString: ' ' //string for indenting
nested items

 });

});

These are the variables for the Responsive Menu script. Most importantly, the irst
option deines what viewport width I want the existing menu to be converted to a
drop down (I've set it to 600px).

Again, using Modernizr to perform this task removes extraneous code for users that
don't need it and allows progressive enhancement of the user experience for those
that do.

For website designers, especially those unfamiliar with JavaScript, plunging into
Modernizr for the irst time can be daunting. There's certainly a lot to take in but
hopefully this short primer will illustrate some obvious advantages that can be
utilized in any future responsive project you might work on.

Solving Cross-browser Responsive Challenges

[292]

High resolution devices (the future)
Devices and their capabilities are changing all the time. Indeed, it isn't just different
viewport sizes we must contend with. Already, we need to consider viewports that
have higher resolution displays. The iPhone 4 was the irst widely used device to
implement a high-resolution display. Its screen is 960 by 640 pixel resolution at 326
pixels per inch, double the resolution of the prior version (iPhone 3GS) and double
the pixel per inch density of laptops such as the 2011 15" MacBook Pro. Expect
many more devices from tablets and laptops to desktop screens to follow suit.
Thankfully, our responsive tools already provide us with the capabilities to support
enhancements for these devices.

Let's suppose we wanted to load a higher resolution version of a site logo for users
of high-resolution displays. It's a situation I encountered when performing a recent
redesign of my own website at http://www.benfrain.com. Here is the markup for
my logo area:

<div class="logo">

</div>

And here is the CSS rule that loads the logo:

 #container header[role="banner"] .logo a {

 background-image: url("../img/logo2.png");

 background-repeat: no-repeat;

 background-size: contain;

 display: block;

 height: 7em;

 margin-top: 10px;

}

http://www.benfrain.com
http://www.benfrain.com

Chapter 9

[293]

Initially, the logo looked like the one shown in the following screenshot:

Perfectly functional but I wanted the logo as crisp as possible on higher resolution
displays. So, I made two further versions of my logo (one for the default state and
one for the hover state) at double the size of the existing logo and named them
logo2@x2.png and logo2Over@x2.png. I then added the following media query in
my CSS:

@media all and (-webkit-min-device-pixel-ratio : 1.5) {

 #container header[role="banner"] .logo a {

 background-image: url("../img/logo2@x2.png");

 }

mailto:logo2@x2.png
mailto:logo2Over@x2.png

Solving Cross-browser Responsive Challenges

[294]

 #container header[role="banner"] .logo a:hover {

 background-image: url("../img/logo2Over@x2.png");

 }

}

The media query targets devices with a minimum device pixel ratio of 1.5. Therefore,
high-resolution displays like those on the iPhone 4 and later come into this category
and render the styles within. You'll notice this rule includes a –webkit- preix. As
ever, remember relevant preixes for the devices you need to target.

And now, with high-resolution devices, the higher quality version of the logo is
loaded instead, as shown in the following screnshot:

Chapter 9

[295]

Admittedly, the difference is subtle. It's probably best to look at the differences in the
lesh to appreciate the difference but the more detailed the image, the more likely it
is to appear beautifully crisp on a high resolution display.

There are considerations to using this technique. Larger images equate to larger
ile sizes and longer download times so again, just because you can, doesn't mean
you should.

Where supported, Scalable Vector Graphics (SVG) alleviate many of the image
scaling issues that we currently face. As the name suggests, they are designed to
produce images that can display crisply at whatever scale is needed. However,
media queries and SVG don't help with inline photos for high resolution displays.
You'll need to implement JavaScript based solutions in those instances.

Summary
In this chapter, we've considered the fundamental differences between progressive
enhancement and graceful degradation. We've then used a polyill to make old
IE understand our media queries so that our design responds there too. Finally,
we used Modernizr to conditionally load CSS and JavaScript iles based upon any
number of feature tests, thereby allowing us to serve up polyills and additional or
alternate styles only when a browser lacks the requisite features. Finally, we've taken
a sneak peek at the technologies that are becoming commonplace in the immediate
future and how we can use CSS3 to serve yet further enhancements for the devices
that support them.

At this point, your humble author believes (and hopes) he has related all the
techniques and tools you'll need to start building your next website or web app
responsively.

It's my irm conviction that currently, responsive web designs built with HTML5
and CSS3 represent the best frontend development option for the vast majority of
websites. With only a little modiication to our existing worklows, practices, and
techniques they enable us to provide fast, lexible, and maintainable websites that
can look incredible regardless of the viewport used to visit them.

As mobile device usage continues to grow exponentially, and new devices that we
never before contemplated enter the browsing fray, this methodology arguably
provides the surest and most future proof means of building designs that will work
on any device, on any viewport, and render as quickly as possible however those
devices connect to the web.

